
Inter-IISER Chemistry Meet (IICM 2017)

Reversible Redox Reactions Of Antiaromatic Expanded Isophlorins

Santosh P. Panchal and Venkataramanarao G. Anand* Department of Chemistry, IISER Pune, Maharashtra, INDIA (E-mail: vg.anand@iiserpune.ac.in)

Abstract: Stable antiaromatic molecules are attractive synthetic targets for their electronic and redox properties. The hypothetical isophlorin structure provides a unique template to synthesize antiaromatic macrocycles. We have developed synthetic methodologies to obtain similar π -conjugated stable $4n\pi$ systems. Expanding the π -conjugation of antiaromatic isophlorin gives access to a variety of macrocycles with $4n\pi$ electrons. Reaction of thiophene with pentafluoro benzaldehyde under Rothemund reaction conditions yielded a 25π air-stable neutral radical, along with a host of other expanded isophlorins. The radical exhibits reversible one-electron redox to form antiaromatic cation and an aromatic anion. All the three states were characterized comprehensively to confirm their aromatic properties. Other antiaromatic π -expanded isophlorins, bearing 32, 40 and 48 π -electrons can also be synthesized from heterocycles such as thiophene and furan, which exhibit reversible two-electron oxidation. These macrocycles were unambiguously characterized by a variety of analytical techniques to confirm their (anti)aromatic behavior. In this presentation, syntheses, redox properties and the structural aspects of antiaromatic expanded isophlorins will be highlighted.

References and Notes:

- 1. Reddy, B. K.; Basavarajappa, A.; Ambhore, M. D.; Anand, V. G. *Chem. Rev.* 2017, *117*, (DOI: 10.1021/acs.chemrev.6b0054)
- 2. Panchal, S, P; Gadekar, S. C.; Anand, V. G Angew. Chem. Int. Ed., 2016, 55, 7797-7800.
- Gopalakrishna, T. Y.; Reddy, J. S.; Anand, V. G. Angew. Chem. Int. Ed., 2014, 53, 10984-10987.
- 4. Gopalakrishna, T. Y.; Anand, V. G. Angew. Chem. Int. Ed., 2014, 53, 6678-6682.
- Gopalakrishna, T. Y.; Reddy, J. S.; Anand, V. G. Angew. Chem. Int. Ed., 2013, 52, 1763-1767.